Self-cleaning properties in engineered sensors for dopamine electroanalytical detection.

نویسندگان

  • Guido Soliveri
  • Valentina Pifferi
  • Guido Panzarasa
  • Silvia Ardizzone
  • Giuseppe Cappelletti
  • Daniela Meroni
  • Katia Sparnacci
  • Luigi Falciola
چکیده

Fouling and passivation are the major drawbacks for a wide applicability of electroanalytical sensors based on nanomaterials, especially in biomedical and environmental fields. The production of highly engineered devices, designed ad hoc for specific applications, is the key factor in the direction of overcoming the problem and accessing effective sensors. Here, the fine-tuning of the system, composed of a highly ordered distribution of silver nanoparticles between a bottom silica and a top titania layer, confers multifunctional properties to the device for a biomedical complex challenge: dopamine detection. The crucial importance of each component towards a robust and efficient electroanalytical system is studied. The total recovery of the electrode performance after a simple UV-A cleaning step (self-cleaning), due to the photoactive interface and the aging resistance, is deeply investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aminothiophenol Furfural Self-assembled Gold Electrode Sensor for Determination of Dopamine in Pharmaceutical Formulations

A new Schiff base 2-aminothiophenol furfural self assembled monolayer (SAM) has been fabricated on a bare gold electrode as a novel sensor for determination of dopamine. Electrochemical impedance spectroscopywas utilized to investigate the properties of the Au 2-aminothiophenol furfural self assembled monolayermodified electrode (Au ATF SAM-ME) using the [Fe(CN)6]3-/4- redox couple. The electro...

متن کامل

Biosynthesis of Silver Nanoparticles Using Leaves of Acacia Melanoxylon and their Application as Dopamine and Hydrogen Peroxide Sensors

In this work, we described a cost-effective and environmentally friendly technique for green synthesis of colloidal silver nanoparticles from aqueous extract of fresh leaves of Acacia melanoxylon and its application as a dopamine and hydrogen peroxide sensor. The prepared silver nanoparticles were characterized by UV-Visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron mi...

متن کامل

Simultaneous/Selective Detection of Dopamine and Ascorbic Acid at Synthetic Zeolite-Modified/Graphite-Epoxy Composite Macro/Quasi-Microelectrodes

The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed m...

متن کامل

Development of a Novel Biosensor Using Cationic Antimicrobial Peptide and Nickel Phthalocyanine Ultrathin Films for Electrochemical Detection of Dopamine

The antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc), widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA), a neurotransmitter assoc...

متن کامل

Self-Cleaning Properties of TiN/CrN Nanoscale Multi-layer Deposited on Surgical 420C Stainless Steel

The present paper focuses on the investigation of self-cleaning properties based on studding of water repellency and blood repellency for TiN- and CrN single-layer and TiN/CrN nanoscale multi-layer coatings deposited via Cathodic Arc Evaporation (CAE) method on medical grade 420C stainless steel substrate. X-ray diffraction (XRD) method and Field Emission Scanning Electron Microscope (FESEM) wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 140 5  شماره 

صفحات  -

تاریخ انتشار 2015